Exploring the effects of CTCF binding site mutations on transcriptional regulation in cancer cell lines

JAMES JUSUF

MENTOR DR. MAHMOUD GHANDI SIXTH ANNUAL PRIMES CONFERENCE, MAY 2016

Outline

Introduction

- Background
- Purposes
- Previous Work

• Research

- Scoring Mutations
- Monoallelic Expression
- Future Work

- Mutations in coding regions affect:
 - Genes/proteins
- Mutations in noncoding regions affect:
 - Regulation of gene expression

Background

Gene transcription

Fig. 2 Interactions between enhancers and promoters cause transcription

Background What is CTCF?

- CCCTC-binding factor
- Protein that interacts with noncoding regions
- Partitions DNA into topologically associating domains (TADs)

Fig. 3 Interaction of CTCF and DNA

Background

- What factors impair CTCF binding activity?
- Hypermethylation of a specific CTCF binding site shown to increase expression of oncogene *PDGFRA*

Fig. 5 DNA methylation impairs CTCF binding

Purposes

- To determine the existence of mutations in CTCF binding sites that significantly affect binding activity, and the genes and cell lines in which they occur
- To elucidate if such mutations alter transcriptional activity through the loss of a domain boundary, possibly leading to cancer
 - 1. Monoallelic expression
 - 2. Tumor dependencies

Previous Work

CTCF binding sites

- Region where CTCF protein interacts with DNA
- ≈14-base pair DNA sequence motif
- Can tolerate variations

Previous Work

How do we quantify CTCF binding activity?

- Assign numerical scores to CTCF binding sites
- <u>gkm-SVM</u>
 - Machine learning approach
 - Shown to be highly accurate in predicting CTCF binding sites

Outline

Introduction

- Background
- Purposes
- Previous Work

Research

- Scoring Mutations
- Monoallelic Expression

• Future Work

How do we quantify the effect of mutations on CTCF binding activity?

- Focus on single nucleotide variants (SNVs)
- Find the change in CTCF binding score (ΔSVM) calculated using gkm-SVM
- Example:

GGACATAAGTGCATTCACCTACTGGATGGCGTAAGGGCTGA = 4.349582 GGACATAAGTGCATTCACCTCCTGGATGGCGTAAGGGCTGA = 3.270352

ΔSVM

= -1.079230

How accurately can gkm-SVM predict the effect of CTCF binding site mutations?

	-0.00200	-0.314423	0	-0.304402
	-0.313169	0	-0.226198	-0.208166
	-0.108212	0.288937	0.381942	0
	-0.115194	0	-0.089978	-0.115467
	0.021625	0	0.116668	0.153223
	-0.362671	0	-0.089719	-0.206011
	-0.234626	-0.054377	-0.159316	0
	-0.039089	0.110697	0	-0.192709
	-0.192339	0.149179	0	0.028798
	-0.024297	0	-0.038631	0.003444
	-0.312881	0	0.133988	0.023566
	0.137686	-0.10425	0.093501	0
	-0.269857	0.059338	0	-0.162848
	-0.285164	0.083838	-0.302749	0
	-0.271677	-0.15041	0	-0.252658
	-0.230048	0	0.062345	-0.181099
	0.255905	-0.052445	0.284822	0
	-0.095442	0	0.001143	-0.035315
	0	-0.107 00	-0.066107	-0.245464
	-0.283054	0.009071	0	-0.295007
-	0	-0.17012	-0.096453	0 364076
	-0.994747	-0.864463	0	-0.984047
	-1.127072	0	-0.937449	-0.688796
	-1.182076	-1.187798	0	-1.069808
	-1.22255	0	-1.136539	1.41286
	+1.196497	0	-0.989618	-1.2833
	-0.576759	0	-1.157211	-1.213482
	-0.900522	-0.015717	-0.92092	0
	+1.476948	0	-1.321821	-1 283573
	-1.239281	-1.207656	-1.217955	0
	0	-0.534271	0.520274	-0.486717
	-0.469659	0	0.813978	-0.597352
	0	0.178421	-0.094454	0.978483
	-0.552	-0.44772	0	-0.728628
	-0.505803	-0.1010	0	-0.384413
	-0.261547	0	-0.0007	-0.166259
	-0.309281	0	-0.171055	-0.1627
	0	-0.064574	-0.056312	-0.058058
	0	0.39944	0.122163	-0.313494
	0.056886	0.146155	0	0.207516
	0	0.059552	-0.125341	-0.056618
	-0.170235	0.104554	0	-0.07844
	0.045267	0.234721	0.207326	0
	-0.242777	-0.028012	0	-0.097407
	-0.050582	0.173429	0	-0.114948
	0	0.2332	-0.04992	0.128386
	0.020182	-0.087602	0.088858	0
	0.060708	0	0.206747	0.107761
	-0.0144	0	0.180161	-0.056138
	0.129424	0	0.207432	0.141785
	0	-0.040001	0.309182	-0.040456
	0.070494	0	0.070048	-0.07057
	Δ	C	G	Т

Fig. 8 Δ SVM for all possible SNVs in the vicinity of a CTCF binding site

-0.994747	-0.864463	0	-0.984047
-1.127072	0	-0.937449	-0.688796
-1.182076	-1.187798	0	-1.069808
-1.22255	0	-1.136539	-1.41286
-1.196497	0	-0.989618	-1.2833
-0.576759	0	-1.157211	-1.213482
-0.900522	-0.015717	-0.92092	0
-1.476948	0	-1.321821	-1.283573
-1.239281	-1.207656	-1.217955	0
0	-0.534271	0.520274	-0.486717
-0.469659	0	0.813978	-0.597352
0	0.178421	-0.094454	0.978483
Α	С	G	т

Largest changes seen within CTCF binding motif

Large datasets

 Mutations are commonly listed in Mutation Annotation Format (MAF)

Hugo_Symbol	Entrez_Gene	Center	Chr	Position	Str	Reference_A	Tumor_Seq_
SAMD11	148398	broad.mit.edu	1	876826	+	G	Α
SKI	6497	broad.mit.edu	1	2169428	+	С	G
NOL9	79707	broad.mit.edu	1	6607435	+	С	Α
Unknown	0	broad.mit.edu	1	11925732	+	С	Т
Unknown	0	broad.mit.edu	1	14155426	+	С	Т
NBL1	4681	broad.mit.edu	1	19969708	+	С	Т
SNHG3-RCC1	751867	broad.mit.edu	1	28833143	+	G	Α
Unknown	0	broad.mit.edu	1	31402468	+	G	Α
Unknown	0	broad.mit.edu	1	32915081	+	С	Т
Unknown	0	broad.mit.edu	1	48175635	+	С	Т
Unknown	0	broad.mit.edu	1	59118254	+	Α	С

Table 1 Example MAF file

Large datasets

- 1. Filter irrelevant mutations that appear far from CTCF binding sites
 - ChIP-seq data shows general regions of high CTCF activity
- 2. Gather information about the sequence surrounding each mutation
 - Lookup surrounding sequence in reference genome (+/- 14 base pairs)
 - Example:

G	-> A at chr1:15922	215
Reference:	AAGTGCATTCACCT <mark>G</mark> CT	'GGATGGCGTAAG
Tumor:	AAGTGCATTCACCT <mark>A</mark> CT ∱	'GGATGGCGTAAG
chr1: 1	592201	1592229

Scoring Mutations Large datasets

New columns

Table 2 Example MAF file after scoring and filtering

Hugo_Symbo	Entrez_Gene	Center	Chr	Position	Str	Reference_A	Tumor_Seq_	Original score	Mutated score	ΔSVM
SAMD11	148398	broad.mit.edu	1	876826	+	G	Α	0.909494	0.776297	-0.133197
SKI	6497	broad.mit.edu	1	2169428	+	С	G	1.752897	1.908221	0.155324
NOL9	79707	broad.mit.edu	1	6607435	+	С	Α	1.099167	1.273119	0.173952
Unknown	0	broad.mit.edu	1	11925732	+	С	Т	0.683691	0.562857	-0.120834
Unknown	0	broad.mit.edu	1	14155426	+	С	Т	0.492041	0.255654	-0.236387
NBL1	4681	broad.mit.edu	1	19969708	+	С	Т	2.500658	2.281291	-0.219367
SNHG3-RCC1	751867	broad.mit.edu	1	28833143	+	G	Α	1.645073	1.613121	-0.031952
Unknown	0	broad.mit.edu	1	31402468	+	G	Α	0.409811	0.211928	-0.197883
Unknown	0	broad.mit.edu	1	32915081	+	С	Т	0.241013	0.106942	-0.134071
Unknown	0	broad.mit.edu	1	48175635	+	С	Т	1.506331	1.379986	-0.126345
Unknown	0	broad.mit.edu	1	59118254	+	Α	С	-0.406675	-0.223868	0.182807

- Find mutations that significantly alter CTCF binding activity
- Filter MAF file again based on ΔSVM

Large datasets

Fig. 9a Distribution of Δ SVM

Large datasets

Fig. 9b

Threshold value: ±2 (0.6% of all mutations)

Histogram of score changes below -2

Histogram of score changes above 2

Result: A list of all mutations that significantly alter CTCF binding activity

Monoallelic Expression Background

- A phenomenon in which one allele is expressed while the other is not
- An indicator of mutations that alter transcriptional activity

A mutation in one homolog may cause monoallelic expression by activating or inhibiting one copy of a nearby gene.

Monoallelic Expression

Dataset

Table 3 Sample of monoallelic expression data

Genes → ... 15729

		NOC2L [‡]	KLHL17 [‡]	PLEKHN1 [‡]	HES4 🌻	ISG15 🌻	ATAD3B 🗘	ATAD3A 🏺
	22RV1_PROSTATE	0	0	1	0	0	0	0
	2313287_STOMACH	NA	0	0	NA	0	NA	NA
S	5637_URINARY_TRACT	NA	NA	0	NA	1	0	NA
ne	59M_OVARY	NA	NA	NA	NA	NA	NA	0
	769P_KIDNEY	NA	NA	NA	NA	NA	NA	NA
	7860_KIDNEY	0	0	0	NA	0	0	1
С) С)	8305C_THYROID	NA	0	0	NA	NA	1	0
	A101D_SKIN	0	0	0	NA	0	1	0
\mathbf{V}	A204_SOFT_TISSUE	0	0	NA	NA	NA	NA	0
	A2058_SKIN	0	0	NA	NA	NA	0	0
	A2780_OVARY	0	0	0	NA	0	0	0
	A375_SKIN	NA	NA	0	NA	NA	0	0

Monoallelic Expression

Intersecting datasets

For each mutation in MAF file:

Outline

Introduction

- Background
- Purposes
- Previous Work

• Research

- Scoring Mutations
- Monoallelic Expression
- Future Work

Future Work

• Complete analysis of monoallelic expression

Another dataset to analyze

• <u>Achilles Project:</u> catalog of tumor dependencies

• Verifying results in the laboratory

• Use CRISPR Cas9 to artificially induce specific CTCF binding site mutations in a controlled experiment

Acknowledgements

I would like to thank...

- MIT PRIMES for making this research possible
- My mentor Dr. Mahmoud Ghandi for his guidance
- My parents for their support and encouragement